ANSYS STK模擬GPS導航訊號與Jamming干擾訊號
- Wu Chih-Chien

- 2025年12月26日
- 讀畢需時 6 分鐘
已更新:1月15日
在現今匯聚多種物理場景的工程環境中,包括手機導航、無人機與電動自駕車、運載火箭以至太空中功能各異的通訊與偵查衛星,工程人員達到任務成功的關鍵在於理解系統如何在太空、空中、地面與網路Cyberspace領域之間互相作用,而不是把它們視為獨立存在的項目或變數。
Ansys STK 如何實現任務導向的多領域工程:從 GPS 輔助導航到無人機蜂群與干擾分析 GNSS, GPS, STK, Jamming, Interference, Coverage
Ansys STK 提供一個高擬真、基於物理的環境,將軌道、彈道、航跡、RF射頻與平台動態整合成單一任務模型,讓團隊能在實際飛測前就評估真實世界的效能。
STK或類似工具正在重新定義「數位任務工程」,縮短傳統「單一系統分析」與真正「系統之系統行為」之間的差距。從 GPS/GNSS 訊號接收、天線效能,到蜂群協同與電子戰威脅,STK 讓工程師能快速迭代、量化風險,並在任務生命週期的各個階段(包括概念設計、系統與子系統開發、測試、驗證、運作以至維護)更具(任性X)韌性,同時節省開發經費並加速開發時間。
全球導航能力評估(Global Navigation Readiness)
STK 能載入現役 GNSS 星系(GPS、Galileo、GLONASS、北斗等)精準星曆、訊號特性與天線方向圖,使每個情境都能反映真實的衛星幾何與覆蓋率。
工程師可以快速評估任意平台(飛機、無人機、地面載具、船艦)在自訂的 3D 航跡與姿態下的:
可見衛星數
精度稀釋(DOP)
連結裕度(Link Margin)
透過STK,你可以:
設定多 GNSS、單頻或多頻接收機概念,並在不同作戰區域、高度與機動條件下評估效能。
量化導航效能因遮蔽、姿態、地形或射頻限制而下降的區域與時間,並在飛測前據此調整航路、高度或星系假設。
大規模蜂群建模與協同(Swarm Modeling at Scale)
使用 STK,你可以在任意區域(城市大樓密布、沿海空曠地帶、爭議海域等)建立並控制大型無人機蜂群,並可使用共享或個別的任務設定。
每架無人機都能遵循自己的:
飛行計畫
感測器任務
通訊限制
同時仍維持整體蜂群層級的協同行為。
透過STK,你可以:
使用航路網路、禁入/必入區域、貼地飛行等限制,快速產生數百條軌跡,用於偵察、打擊或搜救概念驗證。
評估蜂群層級的覆蓋率、重訪率與 ISR 任務延遲,並快速調整蜂群規模、隊形或高度以達成任務需求。
嵌入式 PNT 與接收機效能分析(Embedded PNT Analysis)
透過在每架無人機或平台上嵌入 GNSS 接收機模型,STK 能沿著完整軌跡計算定位、導航與授時(PNT)品質,而不是只在少數靜態點分析。
在每個時間步,你都能記錄:
可見衛星
載雜比(C/N₀)
各類 DOP(HDOP、VDOP、PDOP)
並建立每架無人機的導航完整性時間序列。
透過STK,你可以:
將 GNSS 觀測量與慣性或其他輔助來源概念性結合,標示導航解何處穩健、何處邊緣或不可接受。
使用這些 PNT 資訊驅動更高層級邏輯,例如調整感測器指向限制、收緊武器投放包線,或在完整性門檻被觸發時啟動備援行為。
干擾、阻斷與韌性分析(Threat & Resilience Assessment)
STK 的射頻與通訊模組能詳細建模干擾源、干擾器,以及它們對 GNSS 接收與 PNT 精度的影響。
你可以在情境中放置:
地面干擾器
空中干擾器
海上干擾器
並設定真實的天線方向圖與功率,計算它們如何降低訊干比(SIR)與後續導航效能。
透過STK,你可以:
量化小型攜帶式干擾器或高功率系統能在何處、多久時間內癱瘓或降低蜂群的 GNSS 能力,並繪製空間與時間上的中斷區域與 DOP 崩潰區。
測試各種緩解策略,例如多 GNSS、定向或波束成形天線、INS/GNSS 融合、替代導航方式或自動航路重規劃,並在 STK 中直接比較任務結果。
為什麼這很重要
當太空、射頻、平台與環境模型整合到單一任務層級模擬中,團隊就能從「理論上可行嗎?」進展到「在這條航路、這一天、面對這個威脅時,它會如何表現」。
這樣的轉變帶來:
計畫初期的權衡分析
更少的實體測試迭代
更清晰的任務風險與韌性理解
無論你的目標是:
無人機群的韌性導航
在受干擾環境中的 ISR 與打擊規劃
新世代平台的系統之系統驗證
STK 都提供足夠的擬真度與可擴展性,讓你能在不確定性中做出更有信心的決策。它將射頻、動力學與任務邏輯整合成一致的數位任務模型,將多領域的複雜性轉化為可行動的韌性與洞察。
How Ansys STK Enables Mission-Driven Multi-Domain Engineering—from GPS‑Aided Navigation to Drone Swarms and Jamming Analysis
In today’s mission engineering environment, success depends on understanding how systems behave and interact across space, air, ground, and cyber domains — not in isolation. Ansys STK provides a high‑fidelity, physics‑based environment that fuses orbits, trajectories, RF propagation, and platform dynamics into one integrated mission model, so teams can evaluate real‑world performance long before flight test.
Tools like Ansys STK are redefining digital mission engineering by closing the gap between traditional “single‑system” analysis and true system‑of‑systems behavior. From GNSS signal reception and antenna performance to swarm coordination and EW threats, STK lets engineers iterate quickly, quantify risk, and design resilient missions across the entire lifecycle — from concept to test to operations.
Global Navigation Readiness
Global Navigation Readiness
STK lets you load operational GNSS constellations (GPS, Galileo, GLONASS, BeiDou) with precise ephemerides, signal characteristics, and antenna patterns, so every scenario reflects realistic satellite geometry and coverage. Engineers can rapidly assess visibility, dilution of precision, and link margins for any platform — aircraft, UAV, ground vehicle, or ship — along user‑defined 3D trajectories and attitude profiles.
Configure multi‑GNSS, single‑frequency or multi‑frequency receiver concepts and evaluate performance for different theaters, altitudes, and maneuvers.
Quantify where and when navigation performance will degrade due to masking, attitude, terrain, or RF constraints, and use that insight to refine routes, altitudes, or constellation assumptions before committing to flight tests.
Swarm Modeling & Coordination
Swarm Modeling at Scale
With STK, you can instantiate and control large drone swarms over any area of interest — urban canyons, littoral regions, or contested border zones — using shared or individual mission profiles. Each vehicle can follow its own flight plan, sensor tasking, and comms constraints while still being part of a coordinated swarm behavior at the mission level.
Generate hundreds of trajectories using route networks, keep‑out/keep‑in volumes, and terrain‑following constraints to explore surveillance, strike, or search‑and‑rescue concepts at scale.
Evaluate swarm‑level coverage, revisit rates, and latency for ISR tasks, then quickly experiment with changes in swarm size, formation, or altitude to meet mission‑driven performance thresholds.
Embedded PNT & Receiver Performance
Embedded PNT Analysis
By embedding GNSS receiver models on each drone or platform, STK allows you to compute Positioning, Navigation, and Timing (PNT) quality along the full trajectory rather than at a few static points. At every time step, you can log visible satellites, received carrier‑to‑noise ratios, and DOP metrics (HDOP, VDOP, PDOP), building a time history of navigation integrity for every vehicle in the swarm.
Combine GNSS observables with inertial or other aiding sources conceptually, and map where the navigation solution is robust versus where it becomes marginal or unacceptable.
Use this embedded PNT view to drive higher‑level logic, such as adjusting sensor pointing constraints, tightening weapon employment envelopes, or triggering contingency behaviors when integrity thresholds are violated.
Jamming, Interference & Resilience
Threat & Resilience Assessment
STK’s RF and comms capabilities enable detailed modeling of jammers, interferers, and their impact on GNSS reception and PNT accuracy for each asset. You can place ground‑based, airborne, or naval jammers in the scenario, assign realistic antenna patterns and power levels, and calculate how they degrade signal‑to‑interference ratios and downstream navigation performance.
Quantify where a small portable jammer or high‑power system can deny or degrade GNSS for your swarm, and for how long, by mapping outage regions and DOP blow‑ups in space and time.
Experiment with mitigation strategies — multi‑GNSS use, directional or beamforming antennas, INS/GNSS fusion, alternative navigation modalities, or adaptive route re‑planning — and compare mission outcomes side by side without leaving the STK environment.
Why It Matters
When realistic space, RF, platform, and environment models are integrated into a single mission‑level simulation, teams can move from “Can this work in principle?” to “How will it behave on this route, on this day, against this threat?” That shift enables earlier trade studies, fewer physical test iterations, and a clearer understanding of mission risk and resilience for operators and decision‑makers.
Whether the goal is resilient navigation for drone fleets, contested‑environment ISR and strike planning, or system‑of‑systems validation for next‑generation platforms, STK provides the fidelity and scalability needed to make confident decisions under uncertainty. It connects RF, dynamics, and mission logic in one coherent digital mission model — turning multi‑domain complexity into actionable insight.
參考資訊
STK Radar Tracking & Jamming:結合 TIREM 的專業雷達效能分析
Ansys STK 推動任務導向的多領域工程 — 無人機集群與通訊干擾分析
UAV GNSS導航模擬-- GPS訊號Jamming與反制https://www.facebook.com/share/p/1Yob7Hb8wM/
使用Ansys HFSS及STK進行 GNSS 訊號干擾模擬
更多STK資訊,請洽久鴻國際Persistent Systems Ltd.





留言